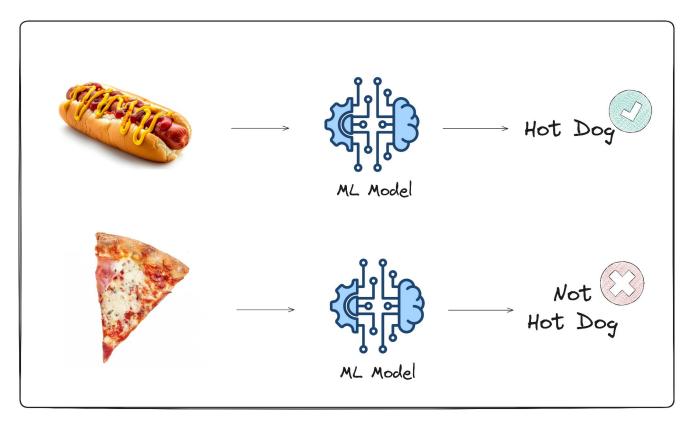
Al-Powered Automatic Replies in Customer Support

Prashant Anand

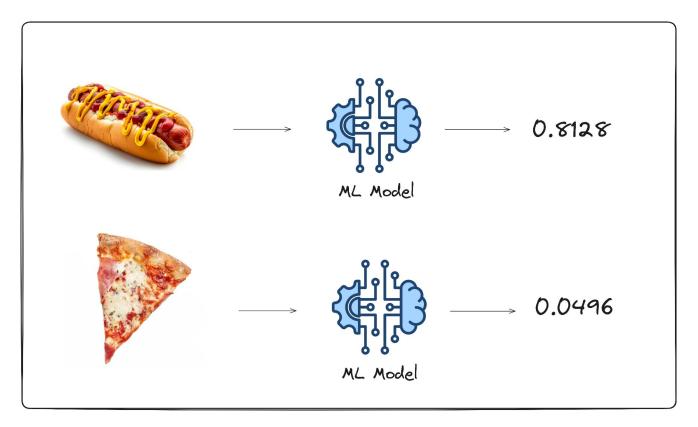
mercari

Table of Contents


- **Ol** Threshold Tuning
- 02 Why Use AI?
- **03** Developing a Precise System
- **04** Business Impact

Threshold Tuning

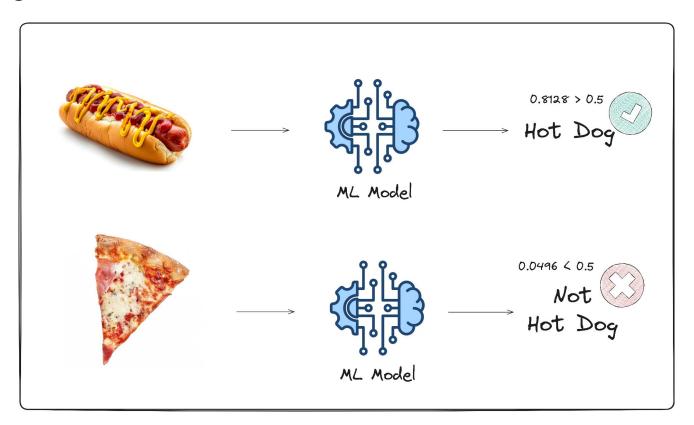
Binary Classifier



Target Metric for Production Use

90% Precision?

Binary Classifier

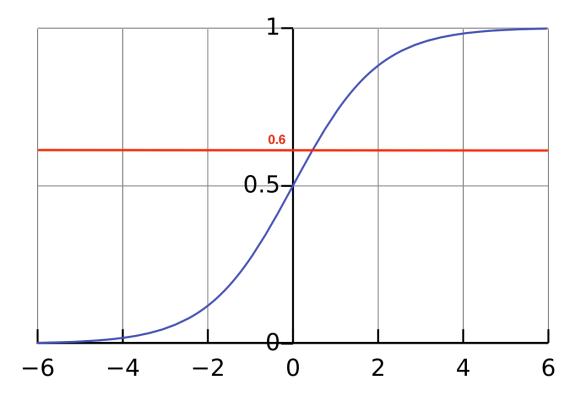


Sigmoid

Binary Classifier

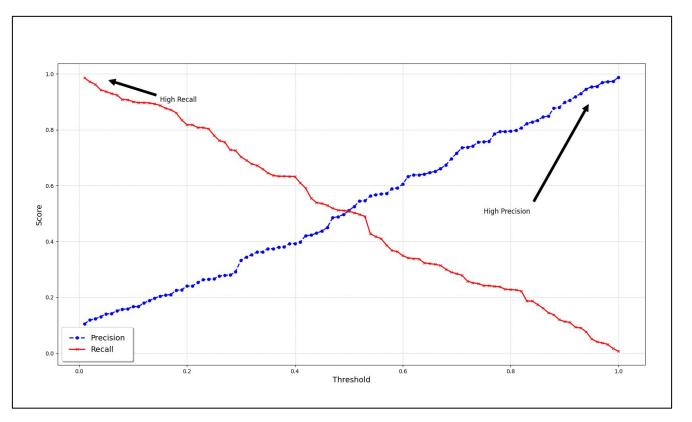
Prediction

	prediction_score	prediction	ground_truth
img 1	0.8993	1	1
img 2	0.0791	0	0
img 3	0.4993	0	1
img 4	0.5341	1	0
img 5	0.4182	0	0
	,	•••	



Classification Metrics

	Vot
	Dog
	L13
round Truth Not Hot Dog	32

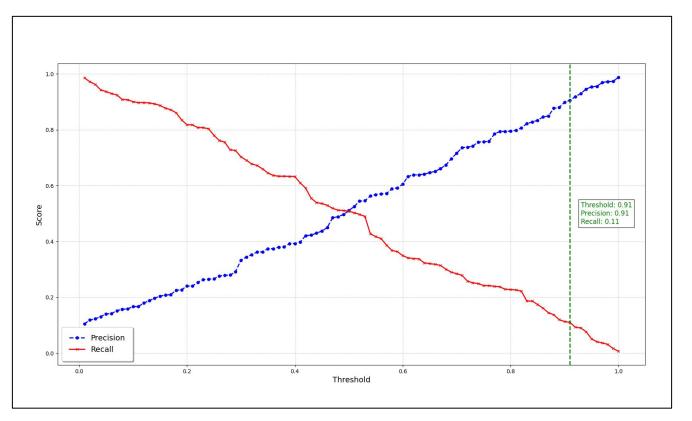


Sigmoid

Precision and Recall vs Threshold

Precision and Recall vs Threshold

```
. . .
def calculate precision_recall(y_pred: np.ndarray, y_true: np.ndarray) -> Dict[str, List[float]]:
   thresholds = np.arange(0.01, 1.01, 0.01).tolist()
   precision = []
   recall = []
   for threshold in thresholds:
        y_pred_binarized = (y_pred >= threshold).astype(int)
        tp = np.sum((y_pred_binarized == 1) & (y_true == 1))
        fp = np.sum((y_pred_binarized == 1) & (y_true == 0))
        fn = np.sum((y_pred_binarized == 0) & (y_true == 1))
        if tp + fp > 0:
           precision.append(tp / (tp + fp))
        else:
            precision.append(0.0)
        if tp + fn > 0:
            recall.append(tp / (tp + fn))
        else:
            recall.append(0.0)
    return {"thresholds": thresholds, "precision": precision, "recall": recall}
```



Precision and Recall vs Threshold

```
def plot precision recall(
    thresholds: List[float], precision: List[float], recall: List[float]
) -> None:
    plt.figure(figsize=(12, 8), dpi=100)
    plt.plot(thresholds, precision, label="Precision", color="blue", marker="o", markersize=5)
    plt.plot(thresholds, recall, label="Recall", color="red", marker="x", markersize=5)
    plt.xlabel("Threshold", fontsize=14)
    plt.ylabel("Score", fontsize=14)
   plt.title("Threshold Analysis: Precision and Recall vs. Threshold", fontsize=16)
   plt.legend(
        loc="best",
        fontsize=14,
       frameon=True,
       fancybox=True,
       framealpha=1,
        shadow=True,
        borderpad=1,
    plt.grid(True, linestyle="--", alpha=0.6)
   plt.show()
```


Threshold Tuning

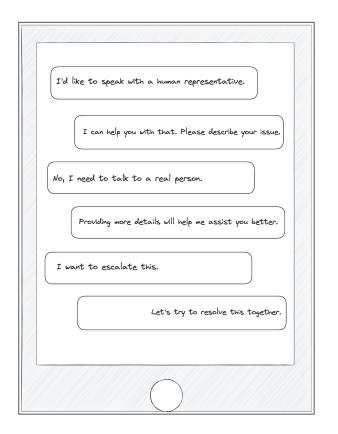
Al-Powered Automatic Replies in Customer Support

Precision-Focused Approach at Mercari

Prashant Anand

ML Engineer at Mercari

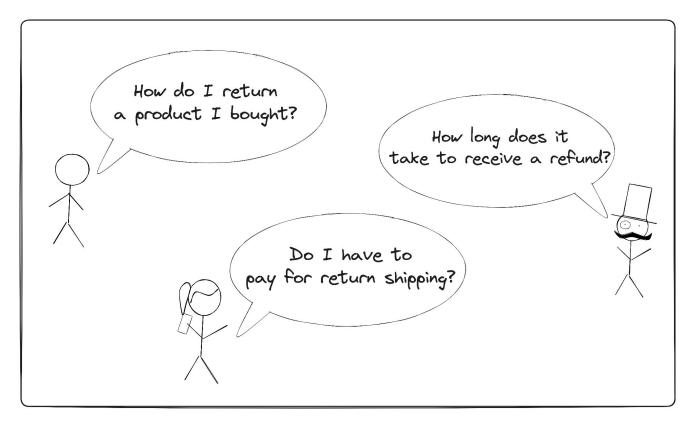
@primaprashant



Why use AI?

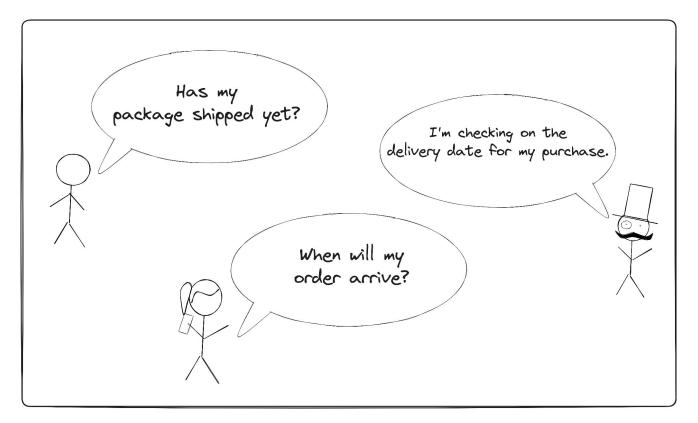
AI Chatbots

The tracking number you provided doesn't work. You can track your order in the "My Orders" section of our website. I told you the tracking number isn't working. Can you help verify it? You can track your order in the "My Orders" section of our website.



Benefits to Businesses

- Lower operational costs
- Resource reallocation
- Improved scalability



Sample Inquiries

Sample Inquiries

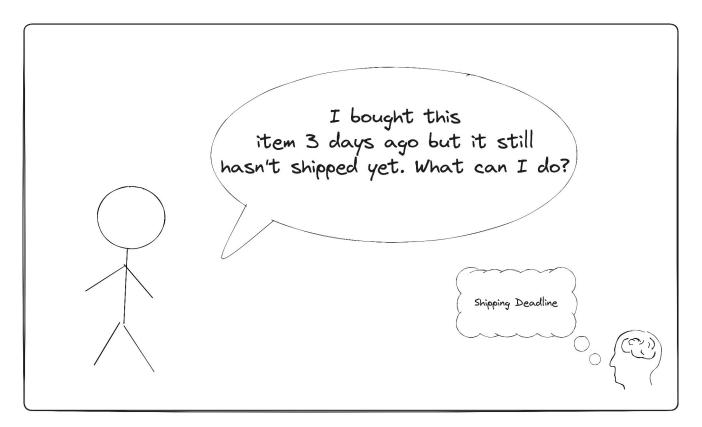
Benefits to Users

- Quicker resolution
- 24/7 availability

Considerations for Our AI Response

- Highly precise
- Easy escalation to human agents

Designing a Precise System



Identify Patterns

- Analyze raw data
- Look at different segments
- Most used response templates
- Talk with domain experts

Utilize Metadata

Metadata

- User role (buyer or seller)
- Transaction status
- Category of item
- Shipping method
- Item price
- Time exceeding shipping deadline
- High value item or not
- Large item or not
- Restrictions on seller
- eKYC audit state

Dataset

Inquiry Text

I bought this item 3 days ago but it still hasn't shipped yet. What can I do?

Metadata Text

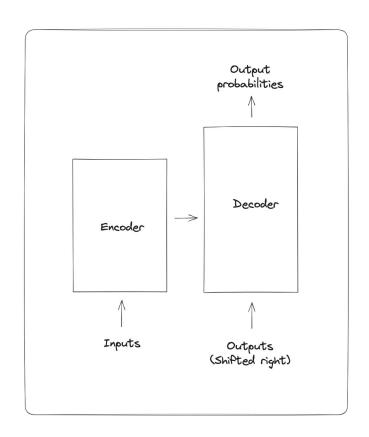
User role: Buyer

Transaction status: Wait shipping

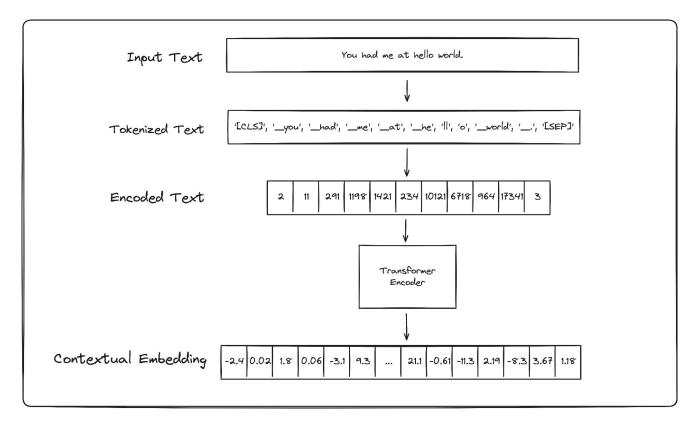
Category name: Electronics

Shipping method: Yamato

Item price: 24800


Time exceeding shipping deadline: O

•••


Transformers Overview

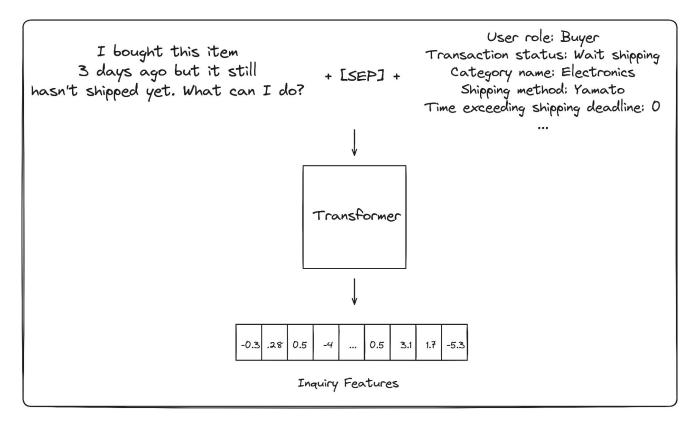
- Introduced in 2017
- State-of-the-art architecture for NLP tasks
- Pre-trained on massive amount of data
- Contextual understanding

Transformer

Pre-Trained Models

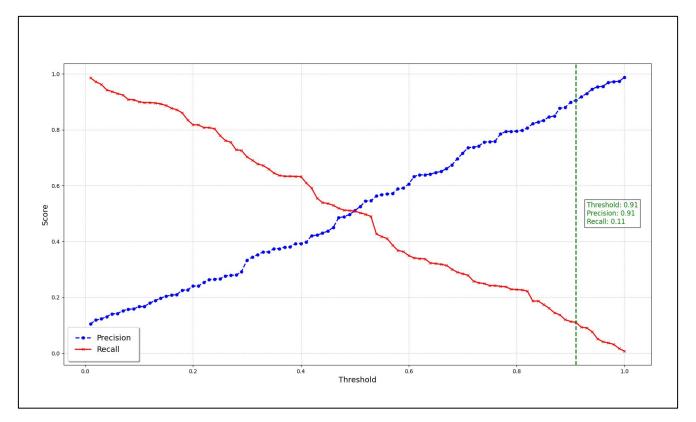
Encoder models							
General purpose							
	Architecture	Training Data	Developer	License	HuggingFace? [9]		
KyotoUniBERT	BERT (base, large)	Japanese Wikipedia (18M articles)	Kyoto University Language Media Processing Lab	Apache 2.0	Δ		
<u>TohokuUniversityBERT</u>	BERT (base, large)	base (v1): Japanese Wikipedia (17M articles / 2.6GB) base (v2) & large: Japanese Wikipedia 4.0GB base (v3) & large (v2): Japanese Wikipedia (4.9GB), Japanese CC-100 (74.3GB)	Tohoku University NLP Group	base (v1, v2) & large: CC BY-SA 3.0 base (v3) & large (v2): Apache 2.0	(base (v1), base (v1, char-level), base (v2, char-level), large, large (char-level), base (v3, char-level), large (v3, char-level), large (v2, char-level))		
NICT BERT	BERT (base)	Japanese Wikipedia	NICT	CC BY 4.0	Δ		
Laboro BERT	BERT (base, large)	Japanese Web Corpus (News and blogs, etc) (12GB)	Laboro.Al	CC BY-NC 4.0	×		
colorfulscoop BERT	BERT (base)	Japanese Wikipedia	Colorful Scoop	CC BY-SA 3.0	0		
<u>UniversityOfTokyoBERT</u>	BERT (small)	Japanese Wikipedia (2.9GB)	University of Tokyo Izumi Lab	CC BY-SA 4.0	<u>0</u>		

<u>Ilm-jp/awesome-japanese-Ilm</u>



Pre-Trained Models

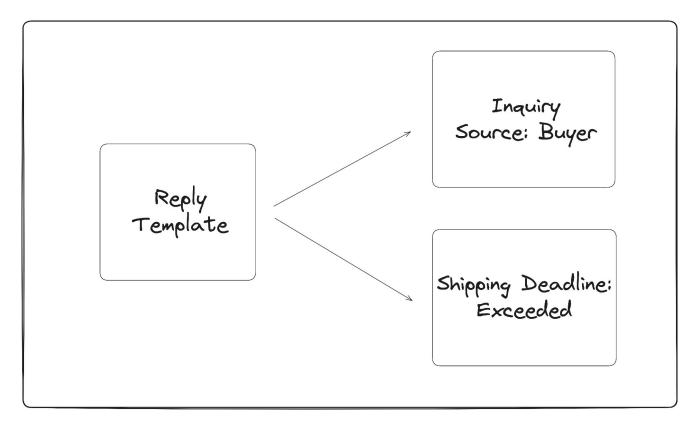
Model Name	Release Year	Link	
Tohoku BERT base Japanese V3	2023	https://huggingface.co/cl-tohoku/bert-bas e-japanese-v3	
LINE DistilBERT Japanese	2023	https://github.com/line/LINE-DistilBERT-Japanese	
Rinna Japanese RoBERTa Base	2021	https://huggingface.co/rinna/japanese-roberta-base	
Bandai Namco DistilBERT-base-jp	2020	https://github.com/BandaiNamcoReseard	
FacebookAl/xlm-roberta-base	2020	https://huggingface.co/FacebookAl/xlm-roberta-base	



Develop ML Model

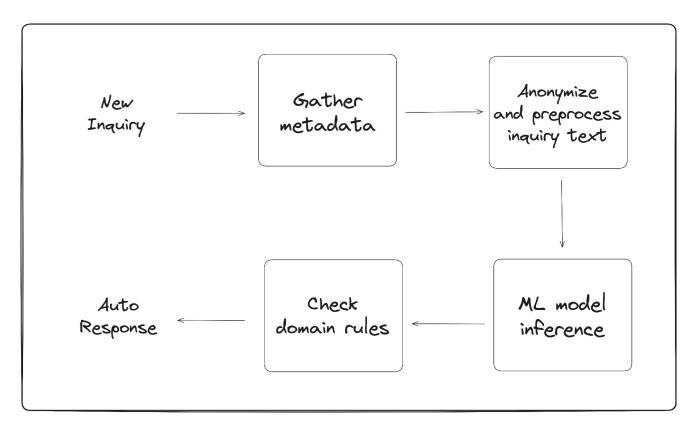
Threshold Tuning

Sample Reply Template


Thank you for your inquiry. We have notified the seller to either ship the item within 24 hours or inform you of the shipping progress via transaction message.

While we understand that you have been waiting for a long time, we kindly ask you to wait for the seller's response for 24 hours from this notification.

Additionally, if there is no response from the seller after the aforementioned time, you can proceed to cancel the transaction by following this guide: https://help.jp.mercari.com/guide/articles/281/



Rules Using Domain Knowledge

Inference Flow

Business Impact

Metrics

- Goal: Average number of manual replies per case
- Guardrails: Average resolution time per user, Customer satisfaction

Results

- Average number of manual replies per case reduced by 5.5% and 1.3%.
- No negative impact on customer satisfaction. Average resolution time per user improved.

Results

- Total time required for customer support operation reduced by 1000 hours and 800 hours per months.
- Automatic replies are about 5% of all the replies sent per month.

What We Learnt!

- Designing high precision system for text classification
- Importance of utilizing metadata
- Threshold tuning for production use of ML models
- Using rules based on domain knowledge along with the ML model

